Avoiding two consecutive blocks of same size and same sum over $\mathbb{Z}^2$
نویسندگان
چکیده
We exhibit an algorithm to decide if the fixed-points of a morphism avoid (long) abelian repetitions and we use it to show that long abelian squares are avoidable over the ternary alphabet. This gives a partial answer to one of Mäkelä's questions. Our algorithm can also decide if a morphism avoids additive repetitions or k-abelian repetitions and we use it to show that long 2-abelian square are avoidable over the binary alphabet and additive repetitions are avoidable over Z 2 .
منابع مشابه
# a 7 Integers 11 ( 2011 )
Independently, Pirillo and Varricchio, Halbeisen and Hungerbühler and Freedman considered the following problem, open since 1992: Does there exist an infinite word w over a finite subset of Z such that w contains no two consecutive blocks of the same length and sum? We consider some variations on this problem in the light of van der Waerden’s theorem on arithmetic progressions.
متن کاملSome results of linear codes over the ring $\mathbb{Z}_4+u\mathbb{Z}_4+v\mathbb{Z}_4+uv\mathbb{Z}_4$
Abstract: In this paper, we mainly study the theory of linear codes over the ring R = Z4 + uZ4 + vZ4 + uvZ4. By the Chinese Remainder Theorem, we have R is isomorphic to the direct sum of four rings Z4. We define a Gray map Φ from R n to Z 4 , which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over Z4. Furthermore, we study the MacWilliams identities of ...
متن کاملVan der Waerden's Theorem and Avoidability in Words
Independently, Pirillo and Varricchio, Halbeisen and Hungerbühler and Freedman considered the following problem, open since 1992: Does there exist an infinite word w over a finite subset of Z such that w contains no two consecutive blocks of the same length and sum? We consider some variations on this problem in the light of van der Waerden’s theorem on arithmetic progressions.
متن کامل$(1+2u)$-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$
Let $R=\mathbb{Z}_4+u\mathbb{Z}_4,$ where $\mathbb{Z}_4$ denotes the ring of integers modulo $4$ and $u^2=0$. In the present paper, we introduce a new Gray map from $R^n$ to $\mathbb{Z}_{4}^{2n}.$ We study $(1+2u)$-constacyclic codes over $R$ of odd lengths with the help of cyclic codes over $R$. It is proved that the Gray image of $(1+2u)$-constacyclic codes of length $n$ over $R$ are cyclic c...
متن کاملOn Codes over $\mathbb{Z}_{p^2}$ and its Covering Radius
This paper gives lower and upper bounds on the covering radius of codes over $\mathbb{Z}_{p^2}$ with respect to Lee distance. We also determine the covering radius of various Repetition codes over $\mathbb{Z}_{p^2}.$
متن کامل